Solvable Sextic Equations
نویسندگان
چکیده
Criteria are given for determining whether an irreducible sextic equation with rational coefficients is algebraically solvable over the complex number field C.
منابع مشابه
Quasi Exactly Solvable Difference Equations
Several explicit examples of quasi exactly solvable ‘discrete’ quantum mechanical Hamiltonians are derived by deforming the well-known exactly solvable Hamiltonians of one degree of freedom. These are difference analogues of the well-known quasi exactly solvable systems, the harmonic oscillator (with/without the centrifugal potential) deformed by a sextic potential and the 1/ sin x potential de...
متن کاملLie algebraic approach of quasi - exactly solvable potentials with two known eigenstates
We compare two recent approaches of quasi-exactly solvable Schrödinger equations, the first one being related to finite-dimensional representations of sl(2, R) while the second one is based on supersymmetric developments. Our results are then illustra ted on the Razavy potential , the sextic oscillator and a scalar field model.
متن کاملLie algebraic approach to complex quasi exactly solvable potentials with real spectrum
We use a Lie algebraic technique to construct complex quasi exactly solvable potentials with real spectrum. In particular we obtain exact solutions of a complex sextic oscillator potential and also a complex potential belonging to the Morse family.
متن کاملA Lie algebraic approach to complex quasi exactly solvable potentials with real spectrum
We use a Lie algebraic technique to construct complex quasi exactly solvable potentials with real spectrum. In particular we obtain exact solutions of a complex sextic oscillator potential and also a complex potential belonging to the Morse family.
متن کاملua nt - p h / 02 01 10 0 v 1 2 2 Ja n 20 02 A General Approach of Quasi - Exactly Solvable Schrödinger Equations
We construct a general algorithm generating the analytic eigenfunctions as well as eigen-values of one-dimensional stationary Schrödinger Hamiltonians. Both exact and quasi-exact Hamiltonians enter our formalism but we focus on quasi-exact interactions for which no such general approach has been considered before. In particular we concentrate on a generalized sextic oscillator but also on the L...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005